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This article presents the complete von Neumann stability analysis of a predictor/multi-cor-
rector scheme derived from an implicit mid-point time integrator often used in shock
hydrodynamics computations in combination with staggered spatial discretizations. It is
shown that only even iterates of the method yield stable computations, while the odd iter-
ates are, in the most general case, unconditionally unstable. These findings are confirmed
by, and illustrated with, a number of numerical computations. Dispersion error analysis is
also presented.
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1. Introduction

The present article proposes a complete von Neumann stability and dispersion analysis of a linearized version of the
time-integration algorithm presented in [17,18]. This approach is based on a predictor/multi-corrector variant of the implicit
mid-point time integrator, and has the appealing property of conserving mass, momentum and total energy in the nonlinear
setting, without staggering in time the thermodynamic variables with respect to the kinematic variables. The algorithm
exactly corresponds to the staggered (in space) finite difference formulations of [2,5] in the case of one spatial dimension
and periodic boundary conditions. Recently, the authors have discovered that the algorithm in [2,3,5,17,18] does not yield
stable solutions in the case of an odd number of iterations [13], and the present work is a documentation of the detailed
analysis that followed these initial observations.

The von Neumann analysis of stability is well established for Lagrangian schemes [10,21], and, in this context, we would
like to mention the very recent work in [4], in which the Lagrangian staggered scheme proposed in [5] is analyzed over a
two-dimensional, uniform, periodic grid. The analysis in [4] is limited to the case of the implicit mid-point algorithm and
the scheme corresponding to only one predictor and one corrector passes, for the case of a purely acoustic system, with
no viscosity. This work is instead focussed on exploring the peculiar behavior of the even and odd iterations of the predic-
tor/multi-corrector, including the effects of viscosity, and is in agreement with the specific cases discussed in [4].

The analysis of stability applies to the linearized, small-perturbation form of the Lagrangian hydrodynamics equations. In
this case, due to the smallness of the displacements, the small-strain approximation is applied (i.e., the gradients in the
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current configuration of the material are approximated by the gradients in the original configuration). In addition, the values
of thermodynamic variables are given by small perturbations superposed to constant reference values. The linearized ap-
proach pursued here is therefore a specific limit case of the more general nonlinear Lagrangian hydrodynamics equations.
In this context, a proof of instability for the linearized case directly implies instability in the more general nonlinear case.
With compelling numerical evidence, we show how the instabilities predicted in the linear case also arise in the more gen-
eral nonlinear case, and that conditional stability limits derived in the linear case, when present, are also very reliable in the
nonlinear case.

The rest of the exposition is organized as follows: Section 2 is devoted to presenting the equations of Lagrangian hydro-
dynamics, deriving an appropriate and representative linearization. In Section 3, a discrete system of equations is obtained in
the case of one dimension and periodic boundary conditions. By means of the Discrete Fourier Transform, the von Neumann
stability analysis is applied in Section 4 to the system of discrete equations. Section 5 is devoted to the analysis of the purely
acoustic system of equations. In Section 6 the analysis is restricted to the highest wave numbers, with the purpose of deriv-
ing a simple stability bound for the time step in practical computations. In Section 7 the effect of viscosity on the stability of
all discrete modes is also accounted for. A number of one-dimensional compressible flow computations are presented in Sec-
tion 8, to confirm the theoretical findings also in the nonlinear case, for an ideal gas. A summary is presented in Section 9.

2. A simplified Lagrangian hydrodynamics system

In order to apply the von Neumann stability analysis to the system of equations of Lagrangian shock hydrodynamics, a
linearization procedure is necessary. To this goal, we briefly summarize the system of Lagrangian equations for a compress-
ible fluid in which heat fluxes, heat sources, and body forces are absent. Let X0 and X be open sets in Rnd (where nd is the
number of spatial dimensions). The deformation
u : X0 ! X ¼ uðX0Þ; ð1Þ
X # x ¼ uðX; tÞ 8X 2 X0; t P 0; ð2Þ
maps the material coordinate X (sometimes referred to as the material, or Lagrangian, coordinate), representing the initial
position of an infinitesimal material particle of the body, to x, the position of that particle in the current configuration
(see Fig. 1). X0 is the domain occupied by the body in its initial configuration, with boundary C0. u maps X0 to X, the domain
occupied by the body in its current configuration. The deformation gradient and deformation Jacobian determinant can be de-
fined as
F ¼ $Xu; ð3Þ
J ¼ detðFÞ; ð4Þ
where $X is the gradient in the original configuration. In the domain X, the equations for the displacement update and con-
servation of mass, momentum, and energy read:
Fig. 1. Sketch of the Lagrangian map u.
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_u ¼ v; ð5Þ
qJ ¼ q0; ð6Þ
0 ¼ q _v þ $xp� $x � ðqm$s

xvÞ; ð7Þ
0 ¼ q _�þ p$x � v � qm$s

xv : $s
xv: ð8Þ
Here, $x and $x� are the current configuration gradient and divergence operators, and _ð�Þ indicates the material, or Lagrang-
ian, time derivative. u ¼ x� X is the displacement vector, q0 is the reference (initial) density, q is the (current) density, v is
the velocity, and p is the pressure, assumed to abide an equation of state of the type p ¼ p̂ðq; �Þ, with � the internal energy per
unit mass.

Remark 1. We are considering the general case of a fluid with viscous stresses. The viscosity might be either physical or
artificial (as in shock-capturing operators for Lagrangian transient algorithms).
2.1. Structure of the Lagrangian shock hydrodynamics flows

It is important at this point to further elaborate on the structure of the Lagrangian shock hydrodynamic systems, and ob-
tain a set of equations amenable to the analysis of stability. To this end, recall that, if an equation of state of the type
� ¼ �̂ðq; pÞ exists, then
d� ¼ @�
@q

����
p

dqþ @�
@p

����
q
dp: ð9Þ
Using the mass conservation equation in differential form
_qþ q$x � v ¼ 0; ð10Þ
the energy Eq. (8) can be rearranged as:
qm$s
xv : $s

xv ¼ q _�þ p$x � v ¼ q
@�
@q

����
p

_qþ q
@�
@p

����
q

_pþ p$x � v ¼ q
@�
@p

����
q

_pþ
p
q� q@�

@q

���
p

@�
@p

���
q

$x � v

0B@
1CA; ð11Þ
where, for a general compressible flow, q@p�jq – 0. It is possible to further manipulate the previous result using thermody-
namic identities. First note that, by standard calculus derivations,
@�
@p

����
q

 !�1

¼ @p
@�

����
q
: ð12Þ
By Gibbs’ identity (i.e., the combined first and second law of thermodynamics [6]) d�� p=q2dq ¼ hdg (h being the temper-
ature and g the entropy per unit mass),
p
q
¼ q

@�
@q

����
g
: ð13Þ
Remark 2. Eq. (13) is intended to be an abstract thermodynamic relationship, and it is important to notice that we have not
assumed that Lagrangian hydrodynamics flows are isentropic.

Combining (12) and (13) in the term multiplying the divergence in (11) yields
p
q� q@�

@q

���
p

@�
@p

���
q

¼ q
@p
@�

����
q

@�
@q

����
g
� @�
@q

����
p

 !
¼ q

@p
@�

����
q

@�
@q

����
g
� @p
@�

����
q

@�
@q

����
p

 !
: ð14Þ
Eq. (14) can be further simplified recalling that a thermodynamic relation of the type p ¼ p̂ðq; �Þ yields
dp ¼ @p
@q

����
�
dqþ @p

@�

����
q
d�; ð15Þ
and, particularly,
0 ¼ @p
@q

����
p

¼ @p
@q

����
�
þ @p
@�

����
q

@�
@q

����
p

: ð16Þ
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Substituting (16) into (14) yields
p
q� q@�

@q

���
p

@�
@p

���
q

¼ q
@p
@�

����
q

@�
@q

����
g
� @p
@�

����
q

@�
@q

����
p

 !
¼ q

@p
@�

����
q

@�
@q

����
g
þ @p
@q

����
�

 !
¼ q

@p
@q

����
g
¼ qc2

s ; ð17Þ
where cs is the isentropic speed of sound in the medium. Hence (11) reduces to
q
@�
@p

����
q
ð _pþ qc2

s $x � vÞ ¼ qm$s
xv : $s

xv : ð18Þ
Defining the Grüneisen parameter [14] as
C ¼ 1

q@�
@p

���
q

¼ 1
q
@p
@�

����
q
; ð19Þ
and recalling that C – 0 for a compressible fluid, Eq. (18) yields
_pþ qc2
s $x � v ¼ Cðqm$s

xv : $s
xvÞ: ð20Þ
Remark 3. For an ideal gas satisfying a c-law equation of state, it is easy to derive C ¼ c� 1 ¼ constant.

The momentum and energy equations can be combined into the mixed, first-order system form of a nonlinear dissipative
wave equation in v and p:
q _v þ $xp ¼ $x � ðqm$s
xvÞ; ð21Þ

_pþ qc2
s $x � v ¼ Cðqm$s

xv : $s
xvÞ: ð22Þ
2.2. Linearization of the equations

Assume the solution is small with regard to the kinematic variables (velocity, displacement, acceleration), that is
v ¼ v 0 � 1; ð23Þ
u ¼ u0 � 1; ð24Þ
and that the solution for the thermodynamic variables (density, pressure, internal energy) is given by a small perturbation of
constant reference fields, namely:
q ¼ �qþ q0; �q ¼ const:; q0 � 1 ð25Þ
p ¼ �pþ p0; �p ¼ const:; p0 � 1 ð26Þ
cs ¼ �cs þ c0s; �cs ¼ const:; c0s � 1 ð27Þ
Hence, by neglecting quadratic and higher-order terms, the linearized version of (21) and (22) is given by:
�q _v 0 þ $Xp0 ¼ �q�m$X � ð$s
Xv 0Þ; ð28Þ

_p0 þ �q�c2
s $X � v 0 ¼ 0: ð29Þ
Remark 4. Note that the viscous term in the energy equation is negligible with respect to the other terms, as it is quadratic
in the velocity.

Remark 5. Linearization implies the small-strain approximation, which allows for the simplification $x � $X (the motion of
the mesh is neglected when computing gradients).

Remark 6. If the same linearization procedures are applied to the displacement Eq. (5) and the differential form of the mass
conservation Eq. (10), the result is
_u0 ¼ v 0; ð30Þ
_q0 þ �q$X � v 0 ¼ 0: ð31Þ
Observe that the linearized mass and displacement equations decouple from the linearized momentum and energy equa-
tions. For this reason, we will only consider the system of linearized momentum and energy equations in the analysis that
follows.

Remark 7. For the sake of simplicity, we will drop the primes and bars from Eqs. (28) and (29).
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In order to achieve insightful results, we will consider a simple one-dimensional flow with periodic boundary conditions.
The reader will appreciate that the subsequent derivations are quite involved, and that these assumptions are essential to
obtain meaningful results.

3. One-dimensional linearized variational formulation

We consider a weak formulation of the one-dimensional linearized equations of Lagrangian shock hydrodynamics, aug-
mented by a shock capturing artificial viscosity operator [18]. Namely, denoting by T the unit periodic torus along the real
line R, we have, for every piece-wise linear (continuous) shape function w and every piece-wise constant (discontinuous)
shape function /,
0 ¼
Z

T

w _V �
Z

T

w;XP þ
Z

T

w;XmV ;X ; ð32Þ

0 ¼
Z

T

/ _P þ
Z

T

/c2
s V ;X ; ð33Þ
where, for the sake of simplicity, we have denoted V ¼ qv (recall q ¼ const:) and P ¼ p. Using the same predictor/multi-cor-
rector strategy adopted in [19], the discretization in time of (32) and (33) yields:
0 ¼
Z

T

wðV ðiþ1Þ
nþ1 � VnÞ � Dt

Z
T

w;XPðiÞnþ1=2 þ Dt
Z

T

w;XmðV ;XÞðiÞnþ1=2; ð34Þ

0 ¼
Z

T

/ðPðiþ1Þ
nþ1 � PnÞ þ Dt

Z
T

/c2
s ðV ;XÞðiþ1Þ

nþ1=2; ð35Þ
where ð�ÞðiÞ and ð�Þðiþ1Þ are used to denote quantities computed with the predictor/corrector iterates ðiÞ and ðiþ 1Þ, respec-
tively, and the subscripts n;nþ 1, and nþ 1=2 are used to indicate quantities at time tn; tn þ 1, and tnþ1=2 ¼ ðtn þ tnþ1Þ=2.

Remark 8. Observe that the latest available velocity iterate is used in the computation of the second term of (35), as in
[2,5,17,18], with the purpose of conserving total energy in the nonlinear setting. This time discretization is adopted to keep
the analysis as close as possible to the algorithm effectively used in the computations in [2,5,17,18], and we refer to this
method as the conservative time integrator.

Assume a uniform, equispaced subdivision of the torus T into finite elements of measure h. The velocities are approxi-
mated by piece-wise linear functions with degrees-of-freedom collocated at the nodes of the discretization, while the pres-
sures are approximated by piece-wise constants, with degrees-of-freedom collocated at the barycenters of the elements
(staggered spatial discretization). In addition to the previous assumptions, mass lumping is adopted in the momentum equa-
tion, yielding the following finite difference equations:
0 ¼ V ðiþ1Þ
j;nþ1 � Vj;n þ

r
2cs

PðiÞjþ1=2;nþ1 þ Pjþ1=2;n � PðiÞj�1=2;nþ1 � Pj�1=2;n

� �
þ j

2
�V ðiÞjþ1;nþ1 � Vjþ1;n þ 2V ðiÞj;nþ1 þ 2Vj;n � V ðiÞj�1;nþ1 � Vj�1;n

� �
; ð36Þ
0 ¼ Pðiþ1Þ
jþ1=2;nþ1 � Pjþ1=2;n þ

csr
2
ðV ðiþ1Þ

jþ1;nþ1 þ Vjþ1;n � V ðiþ1Þ
j�1;nþ1 � Vj�1;nÞ; ð37Þ
where r ¼ csDt
h is the acoustic Courant number, j ¼ mDt

h2 , and j is the node index.

Remark 9. In the simple one-dimensional, periodic case, Eqs. (36) and (37) exactly coincide with the one-dimensional
version of the finite difference schemes detailed in [2,5].
4. von Neumann stability analysis

As customary in the von Neumann stability analysis (see [15,20] for details), because the boundary conditions are peri-
odic, the solution degrees-of-freedom can be expanded as a finite, linear combination of complex exponentials with complex
coefficients. This eventually amounts to applying a Discrete Fourier Transform (DFT) operator to the discrete Eqs. (36) and
(37). In particular, we have:
V ðiÞj;n ¼
XN=2

k¼�N=2þ1

bV ðiÞk;neibkj; ð38Þ

PðiÞjþ1=2;n ¼
XN=2

k¼�N=2þ1

bP ðiÞk;neibkðjþ1=2Þ; ð39Þ
where i ¼
ffiffiffiffiffiffiffi
�1
p

, and bV ðiÞk;n is the Fourier coefficient associated with the kth harmonic, time step n and iterate ðiÞ. Note that N is
the number of elements (a multiple of 2), and bk ¼ 2phk

jTj ¼ 2pk
N is an angularly scaled version of the integer wave number k
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(with jTj ¼measðTÞ ¼ Nh ¼ 1 the measure of the torus). Complex exponentials associated to different wave numbers satisfy
a discrete orthogonality property:
XN=2�1

m¼�N=2

eibkmeibqm ¼ dkq; for � N=2 6 k; q 6 N=2; ð40Þ
with dkq the Kronecker delta tensor (dkq ¼ 1 if k ¼ q, and dkq ¼ 0 if k – q). Substitute (38) and (39) into (36) and (37) multi-
plied by eibk1

j and eibk2
ðjþ1=2Þ, respectively, and sum over j. We multiply (37) by eibk2

ðjþ1=2Þ instead of eibk2
j, in order to simplify the

algebra, as the pressure variable is staggered in space with respect to the momentum equation.
Due to the orthogonality property (40), and the linearity of the system of Eqs. (36) and (37), it is easy to verify that the

previous steps lead to N pairs of equations, coupling the dynamics of the kth pressure and velocity modes, with
�N=2þ 1 6 k 6 N=2. Namely:
ðI þ A0ÞbZ ðiþ1Þ
k;nþ1 ¼ A1

bZ ðiÞk;nþ1 þ ðI þ A2ÞbZk;n; ð41Þ
where
bZ ðiÞk;n ¼
bV ðiÞk;nbP ðiÞk;n

8<:
9=; ð42Þ
is the kth velocity/pressure modal pair, relative to the nth time step and the ith iterate, and
I ¼
1 0

0 1

" #
; ð43Þ

A0 ¼
0 0

i cs
2 r sin bk

2

� �
0

" #
; ð44Þ

A1 ¼
jðcosðbkÞ � 1Þ �i 1

2cs
r sin bk

2

� �
0 0

" #
; ð45Þ

A2 ¼
jðcosðbkÞ � 1Þ �i 1

2cs
r sin bk

2

� �
�i cs

2 r sin bk
2

� �
0

24 35: ð46Þ
It is also very important to observe that because the degrees-of-freedom ‘‘signal” has real values, the discrete Fourier coef-
ficients must satisfy the complex conjugacy property
bZ ðiÞ�k;n ¼ ðbZ ðiÞk;nÞ

�
; for 0 6 k 6 N=2� 1; ð47Þ
where cW � indicates the complex conjugate of cW (componentwise). For the same reason, the following condition on the of-
ten called ‘‘odd ball” mode holds:
bZ ðiÞN=2;n ¼ 0: ð48Þ
Because complex conjugates have the same absolute value and opposite phase, it is sufficient to limit the study of the ampli-
fication factors for the modes of the discrete system to the range 0 6 k < N=2, that is, 0 6 bk < p. In the discussion that
follows, it will also be important to consider a variation of the time-integration algorithm, in which the velocity iterate
V ðiþ1Þ in (37) is replaced by the previous iterate V ðiÞ. This method will be referred to as the lagged approach. In this case,
Eq. (37) becomes
0 ¼ Pðiþ1Þ
jþ1=2;nþ1 � Pjþ1=2;n þ

csr
2

V ðiÞjþ1;nþ1 þ Vjþ1;n � V ðiÞj�1;nþ1 � Vj�1;n

� �
; ð49Þ
and, consequently, A0 and A1 need to be modified as:
A0 ¼ 0; ð50Þ
A1 ¼ A2: ð51Þ
This approach yields a more straightforward time integrator for the linearized equations, which does not extend, however, to
a conservative scheme in the nonlinear case.

The vector Eq. (41) is a recurrence relationship between the predictor/multi-corrector iterates of the proposed time-inte-
gration approach. Set
B0 ¼ ðI þ A0Þ�1ðI þ A2Þ; ð52Þ
B1 ¼ ðI þ A0Þ�1A1; ð53Þ
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and recall that the first guess for the new iterate at time tnþ1 is the solution at time tn, namely bZ ð0Þk;nþ1 ¼ bZk;n. Then, we can
derive explicit recurrence formulas for the computation of bZ ðiþ1Þ

k;nþ1 in terms of bZk;n:
bZ ð1Þk;nþ1 ¼ B1
bZ ð0Þk;nþ1 þ B0

bZk;n ¼ ðB0 þ B1ÞbZk;n ¼ Gð1ÞbZk;n; ð54ÞbZ ð2Þk;nþ1 ¼ B1
bZ ð1Þk;nþ1 þ B0

bZk;n ¼ ðB1Gð1Þ þ B0ÞbZk;n ¼ Gð2ÞbZk;n; ; ð55ÞbZ ð3Þk;nþ1 ¼ B1
bZ ð2Þk;nþ1 þ B0

bZk;n ¼ ðB1Gð2Þ þ B0ÞbZk;n ¼ Gð3ÞbZk;n; ð56ÞbZ ð4Þk;nþ1 ¼ B1
bZ ð3Þk;nþ1 þ B0

bZk;n ¼ ðB1Gð3Þ þ B0ÞbZk;n ¼ Gð4ÞbZk;n; ; ð57ÞbZ ð5Þk;nþ1 ¼ � � � ð58Þ
In the limit for an infinite number of iterations, we obtain the amplification matrix for the original implicit mid-point algo-
rithm from which the predictor/corrector time integrator is derived:
ðI þ A0ÞbZ ð1Þk;nþ1 ¼ A1
bZ ð1Þk;nþ1 þ ðI þ A2ÞbZk;n; ð59Þ
that is, removing the superscript ð1Þ from bZ ð1Þk;nþ1, and rearranging terms,
bZk;nþ1 ¼ ðI þ A0 � A1Þ�1ðI þ A2Þ bZk;n ¼ Gð1ÞbZk;n: ð60Þ
Remark 10. The predictor/multi-corrector method can therefore be interpreted as a fixed-point iterative process,
converging to the solution of the implicit method (60). In particular, the conservative scheme has the nature of a Gauss–
Seidel iteration, as the matrix I þ A0 is lower diagonal, while the lagged scheme resembles a Jacobi iteration, since in this
case A0 ¼ 0.

Remark 11. Convergence of the fixed-point iteration is ensured if kB1k < 1 (sufficient condition). It will be subsequently
shown that this condition is equivalent to the temporal stability condition.

It is possible to evaluate the stability properties of the proposed predictor/multi-corrector algorithm, by evaluating how
GðiÞ evolves in time an initial condition. In particular, if
kGðiÞk ¼ max
s2R2n0

kGðiÞsk
ksk 6 1 ð61Þ
then stability of the numerical discretization is ensured. Defining the spectral radius as
qðGðiÞÞ ¼maxfjkðGðiÞÞjg 6 kGðiÞk; ð62Þ
where kðGðiÞÞ is a (generally complex) eigenvalue of GðiÞ, we can recast condition (61) as (see [9])
qðGðiÞÞ < 1) stability; ð63Þ
qðGðiÞÞ > 1) instability: ð64Þ
These conditions are consequence of a well-known theorem in matrix analysis:

Theorem 1. (cf. [11], p. 298) Let A 2 Cm�m, where C is the complex field. Then: limn!1An ¼ 0 if and only if qðAÞ < 1.
Hence, if qðGðiÞÞ < 1, Theorem 1 directly implies stability. If qðGðiÞÞ > 1, one can consider, as initial condition vector bZ0, the
eigenvector relative to an eigenvalue k0 with jk0j > 1. Using the properties of vector norms, it is easy to see that
limn!1kbZnk ¼ limn!1kðGðiÞÞnbZ0k ¼ limn!1jk0jnkbZ0k ¼ 1, and we have instability. The case that our analysis covers less pre-
cisely is the case when qðGðiÞÞ ¼ 1. Recalling that (see [11], p. 299)
qðGðiÞÞ ¼ lim
n!1
kðGðiÞÞnk1=n

; ð65Þ
it is easy to realize that the case qðGðiÞÞ ¼ 1 admits linear growth in the solution (i.e., kðGðiÞÞnk ¼ OðnÞ). However, the analysis
that follows (see, e.g., Fig. 2) shows that qðGðiÞÞ ¼ 1 occurs in three special cases:

1. r ¼ 0() Dt ¼ 0, a trivial case corresponding of no time evolution.
2. bk ¼ 0, corresponding to the evolution in time of a constant mode. In this case, it is not necessary to resort to the von

Neumann analysis, to prove that the entire class of algorithms under consideration stably preserves constant solutions
in time.

3. The time-step stability limit, as a limit case of the condition qðGðiÞÞ < 1. This case is not so important in practical (non-
linear) computations, since it is usually not safe to run computations exactly at the stability limit.
Note also that a complex eigenvalue of GðiÞ can be expressed as:
kðGðiÞÞ ¼ jkðGðiÞÞjei �xDt; ð66Þ



Fig. 2. Elevation plots of the spectral radii qGðiÞ ðr;bkÞ for j ¼ 0;j ¼ 1=4, and various iterates of the predictor/multi-corrector algorithm. In the top row, the
implicit mid-point time integrator detailed in (60). In the subsequent rows, in ascending order, the iterates from one to four. Note that in Fig. 2(a), (b), (d), (e),
(g), (h), (j), (k), (m), and (n) the vertical range is [0,1.2], while in Fig. 2(c), (f), (i), (l), and (o) the vertical range is [0,1]. Also note that Fig. 2(a) and (b) are identical.
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where �xDt ¼ argðkðGðiÞÞÞ, and �x 2 R is the phase. This decomposition will be important for the study of the dispersion
properties of the proposed time-integration approach. An alternative expression for (66) is

kðGðiÞÞ ¼ eð��nþi �xÞDt; ð67Þ



1 For
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where

jkðGðiÞÞj ¼ e��nDt or �n ¼ � logðjkðGðiÞÞjÞ
Dt

: ð68Þ
By performing a Taylor expansion of �n and �x in the limit of vanishing time step Dt and mesh size h, it is possible to recover
the truncation error and the formal order of accuracy of the various iterates of the method.

Due to the complexity of the algebra involved, we are not including the calculations and explicit expressions of the eigen-
values of the GðiÞ matrices in the general case. We will present the fundamental results by appropriate plots in Sections 5 and
7. All algebraic symbolic manipulations were performed using the MATHEMATICA�TM software [1,22] .
5. The case of vanishing viscosity

In shock hydrodynamics computations, the artificial viscosity is usually present only in shock layers, and absent in expan-
sion regions. Therefore, it is very important to study the proposed time integrator in the limit of a vanishing viscosity, as
most of the flow domain is subject to this condition.

5.1. Amplification factor

Fig. 2 shows the spectral radii of the matrices GðiÞ for i ¼ 1;2;3;4 and i!1 (implicit limit), for the conservative and
lagged algorithms in the case j ¼ 0, and also for the conservative algorithm when j ¼ 1=4. For the time being, we focus
on the plots relative to j ¼ 0.

First, note that the implicit algorithm detailed in (60) is neutrally stable (Fig. 2(a) and (b)), as the spectral radius of the
corresponding amplification matrix is equal to unity over the entire plane ½r; b�. The first and third iterates of the conserva-
tive algorithm (C) are unconditionally unstable, while the second and fourth iterates are conditionally stable, as shown in
Fig. 2(g) and (m). This phenomenon, somewhat surprising, can be explained by realizing that the spectral radii for the pre-
dictor/multi-corrrector scheme exhibit a non-monotonic convergence to unity as ðiÞ ! 1. Observe that the situation for the
lagged algorithm is somewhat different, since the first two iterates are unconditionally unstable (Fig. 2(e) and (h)), but the
subsequent third and fourth iterates regain conditional stability in the range r 2 ½0;1� (Fig. 2(k) and (n)). This fact can easily
be observed in the contour plots of the spectral radii presented in Fig. 3, and perhaps even more clearly in the sections at
various values of r presented in Fig. 4.

Also note in Fig. 4(d) that the second iterate, indicated by a red1 line, shows the insurgence of a bifurcation (a kink in the
red curve, near bk ¼ 3p=4). Past the bifurcation point, the eigenvalues of the amplification matrix cease to be complex con-
jugate and become real, as also evident in Fig. 7(d), by the absence of a phase in the eigenvalues. This is not a desirable prop-
erty in wave propagation problems, where one would expect the discretized equations to behave as a system of harmonic
oscillators. Past the bifurcation point, the discrete solutions become real exponentials in time, and cause an incorrect repre-
sentation of the structure of the original system of partial differential equations. The lagged algorithm does not show this
behavior.

5.2. Dispersion error

When no viscosity is present, it is very insightful to evaluate the extent of the dispersion error in computations. This can
be done by observing that the classical dispersion relationship for a linear wave is given by x ¼ 2pkcs=jTj. Recalling that
T ¼ hN, it is easy to derive that
xDt ¼ rbk: ð69Þ
A typical measure of the dispersion error is given by the ratio
�x
x
¼ argðkðr;bkÞÞ

rbk
: ð70Þ
Fig. 5 shows elevation plots of the ratio �x=x. It is noticeable in Fig. 5(e) and (i) that bifurcation takes place for values of ½r; bk�
in the neighborhood of ½1;p�, for the second and fourth iterate of the conservative algorithm, respectively. As already men-
tioned, this behavior is not present for the lagged scheme.

Contour plots of the dispersion ratio are presented in Fig. 6. The black thick lines indicate the loci where the dispersion
ratio equals unity, that is, optimal behavior (no phase error).

Comparing the various results in Fig. 7, notice the good behavior of the conservative approach in retaining the dispersion
properties of the corresponding implicit method, at least until a bifurcation arises for the second iterate (see Fig. 7(a)–(d)).
interpretation of color in Fig. 4, the reader is referred to the web version of this article.



Fig. 3. Contour plots of the spectral radii of various iterates of the predictor/multi-corrector algorithm for j ¼ 0. Fig. 3(a), (c), (e), and (g): conservative
scheme (C). Fig. 3(b), (d), (f), and (h): lagged scheme (L).
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This is not the case for the lagged scheme, for which all the iterates have quite different phase characterization with respect
to the implicit method (Fig. 7(e)–(h)).



Fig. 4. Spectral radii for the predictor/multi-corrector algorithm in the case j ¼ 0, for various values of the acoustic Courant number r. Fig. 4(a)–(d):
Conservative scheme. Fig. 4(e)–(h): Lagged scheme. Black: Implicit time integrator. Orange, red, green and blue are used for the first, second, third, and
fourth iterate, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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5.3. Low wave number limit and truncation error

A Taylor expansion of the amplification factor q and dispersion ratio �x=x in a right neighborhood of bk ¼ 0 can more
clearly quantify the previous conclusions on the nature of the proposed conservative algorithm.
qðGð1ÞÞ ¼ 1þ r2b2
k

4
þ Oðb3

kÞ;
�xðGð1ÞÞ

x
¼ 1� 4þ 11r2

96
b2

k þ Oðb4
kÞ; ð71Þ

qðGð2ÞÞ ¼ 1� r4b4
k

16
þ Oðb5

kÞ ;
�xðGð2ÞÞ

x
¼ 1� 2þ r2

24
b2

k þ Oðb4
kÞ; ð72Þ

qðGð3ÞÞ ¼ 1þ r6b6
k

64
þ Oðb7

kÞ;
�xðGð3ÞÞ

x
¼ 1� 2þ r2

24
b2

k þ Oðb4
kÞ; ð73Þ

qðGð4ÞÞ ¼ 1� r8b8
k

256
þ Oðb9

kÞ ;
�xðGð4ÞÞ

x
¼ 1� 2þ r2

24
b2

k þ Oðb4
kÞ: ð74Þ
Hence, it is clearly noticeable the fact that the low modes are amplified for odd iterates and damped for even iterates. The
dispersion of low modes, instead, seems to maintain the same limit behavior as soon as the number of iterates is larger than
one. Furthermore, a Taylor series expansion of �n and �x in powers of Dt and h allows to evaluate the order of convergence of
the proposed method. We obtain:
�nðGð1ÞÞ ¼ �1
4

c2
s
~k2Dt þ Oðh2DtÞ; ð75Þ

�xðGð1ÞÞ ¼ x� 1
24

csh
2~k3 � 11

96
c3

s
~k3Dt2 þ OðDt2h2Þ; ð76Þ

�nðGð2ÞÞ ¼ 1
16

c4
s
~k4Dt3 þ Oðh2Dt3Þ; ð77Þ

�xðGð2ÞÞ ¼ x� 1
24

csh
2~k3 � 1

12
c3

s
~k3Dt2 þ OðDt2h2Þ; ð78Þ

�nðGð3ÞÞ ¼ � 1
64

c6
s
~k6Dt5 þ Oðh2Dt5Þ; ð79Þ

�xðGð3ÞÞ ¼ x� 1
24

csh
2~k3 � 1

12
c3

s
~k3Dt2 þ OðDt2h2Þ; ð80Þ

�nðGð4ÞÞ ¼ 1
256

c8
s
~k8Dt7 þ Oðh2Dt7Þ; ð81Þ

�xðGð4ÞÞ ¼ x� 1
24

csh
2~k3 � 1

12
c3

s
~k3Dt2 þ OðDt2h2Þ; ð82Þ
where ~j ¼ 2pk=jTj, so that x ¼ ~jcs. Consequently, the first, second, third and fourth iterates of the predictor/multi-corrector
conservative method are first-, third-, fifth- and seventh-order accurate with respect to the dissipation error. All iterates are
second-order accurate with respect to the dispersion error.



Fig. 5. Elevation plots of the dispersion ratio �x=x, for j ¼ 0, and various iterates of the predictor/multi-corrector algorithm. In the top row, the implicit
mid-point time integrator detailed in (60). In the subsequent rows, in ascending order, the iterates from one to four. Fig. 5(a), (c), (e), (g), and (i) refer to the
conservative algorithm (C), Fig. 5(b), (d), (f), (h), and (j) refer to the lagged algorithm (L). Also note that Fig. 5(a) and (b) are identical.
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6. Stability of the highest wave numbers

Before proceeding with the case in which dissipation is present, it is important to develop a preliminary analysis of sta-
bility for the highest spatial wave numbers in the discrete equations. Stability of the highest modes in the computation is a
necessary but not sufficient condition for overall stability. However, an understanding on the high wave number dynamics



Fig. 6. Contour plots of the ratio �x=x, for j ¼ 0, and various iterates of the predictor/multi-corrector algorithm. Fig. 6(a), (c), (e), and (g): conservative
scheme. Fig. 6(b), (d), (f), and (h): lagged scheme. The black continuous line indicates the locus �x=x ¼ 1.
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can shed light on the overall behavior of the algorithm, and, most importantly, provide stable time estimates of practical use
in computations.



Fig. 7. Plot of the ratio �x=x, for j ¼ 0, for various values of the acoustic Courant number r. Fig. 7(a)–(d): conservative scheme. Fig. 7(e)–(h): Lagged
scheme. Color scheme is as follows. Black is used for the implicit version of the algorithm. Orange, red, green and blue are used for the first, second, third,
and fourth iterate, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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The amplification of the highest wave number is governed by the matrices GðiÞ, when bk is set equal to p. In this case, a
number of algebraic manipulations leads to the following expressions for the eigenvalues of the matrices GðiÞ’s:
kð1Þ1;2 ¼ 1� r2 � 2j ð83Þ

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r4 þ 4r2ð�1þ jÞ þ 4j2

q
; ð84Þ

kð2Þ1;2 ¼ 1� 2r2 þ r4 � 2jþ 4r2jþ 4j2 ð85Þ

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1þ 2r4 þ 4j� 8j2 þ ð1þ r4 � 2jþ 4j2 þ r2ð�2þ 4jÞÞ2

q
; ð86Þ

kð3Þ1;2 ¼ � � � ; ð87Þ
where we have omitted the derivations for the third and higher iterates, since the algebraic expressions become very com-
plex and tedious to manipulate. Let us consider the second iterate, that is the first iterate for which second-order accuracy is
achieved, and analyze the stability condition �1 6 kð2Þ1;2 6 1. Only the right bound is meaningful for stability. Setting kð2Þ1;2 ¼ 1
yields a polynomial equation, with roots r ¼ 0;r ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2j
p

, and r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2j
p

. Only the last root is useful in defining a
stability limit, which, taking squares, reads
r2 þ 2j� 1 6 0 or c2
s Dt2 þ 2mDt � h2

6 0: ð88Þ
The same condition is derived in the case of four iterations of the predictor/multi-corrector algorithm, with much more com-
plex algebraic manipulations. Solving the quadratic equation associated with (88) yields the bounds
�m�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ c2

s h2
q

c2
s

6 Dt 6
�mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ c2

s h2
q

c2
s

: ð89Þ
The left bound is always verified, while the right gives the stability limit. Multiplying and dividing the entire inequality by

mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ c2

s h2
q

(always a strictly positive quantity) and simplifying the term c2
s , we obtain
Dt 6
h2

mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ c2

s h2
q : ð90Þ
Remark 12. In the limit of a vanishing artificial viscosity, the acoustic Courant–Friedrichs–Lewy condition is obtained,
namely,
Dt 6
h
cs

or r 6 1: ð91Þ
Remark 13. In the limit of a vanishing speed of sound (condition very often encountered in hypervelocity impact problems),
the stability limit is uniquely dependent on the artificial viscosity m and takes the classical form of the dissipative Courant–
Friedrichs–Lewy condition:



Fig. 8.
continu
is refer
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Dt 6
h2

2m
or j 6

1
2
: ð92Þ
Remark 14. The predictor multi-corrector approach can also be interpreted as a fixed-point iteration procedure [18]. A suf-
ficient condition for the convergence (in spectral space) of such procedure is kB1k < 1, that is qðB1Þ < 1. It is not difficult to
verify that, when bk ¼ p, this condition coincides with (88).
7. The case of non-vanishing viscosity

Artificial viscosity operators are usually added in shock hydrodynamics computations to enhance the robustness of the
algorithms under extreme shock wave conditions. Viscosity operators usually are modeled as Laplace diffusive operators,
and may pose additional constraints on stability, further limiting the time step. In this case, because of the parabolic nature
of the problem, the dispersion error analysis is less relevant and is omitted. Also, only results for the conservative scheme are
presented, since this method is the main focus of the present work.

7.1. Amplification factor

The amplification factor (spectral radius) of the matrices GðiÞ is presented as a function of the non-dimensional wave num-
ber bk and acoustic Courant number r in Fig. 2(c), (f), (i), (l), and (o), for a value of the non-dimensional viscosity coefficient
j ¼ 1=4. A comparison with the plots in Fig. 2 for the case of j ¼ 0 shows that the introduction of diffusion in the proposed
predictor/multi-corrector algorithm further restricts the stability range of the even iterates but provides a stability range for
the otherwise unstable odd iterates. This fact can more clearly be observed in Figs. 8 and 9. Recalling that, by definition and
Contour plots of the spectral radii for various predictor/multi-corrector iterates of the conservative algorithm, in the case j ¼ 1=4. The red
ous line correspond to the isoline for the spectral radius equal to unity. (For interpretation of the references to colour in this figure legend, the reader

red to the web version of this article.)





Fig. 11. Three-dimensional (red) surfaces representing the loci of the spectral radii equal to unity for the first four iterates of the conservative predictor/
multi-corrector scheme. The blue surfaces represent the stability limit given by (88) (or, equivalently, (90)). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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8.1. Periodic breaking wave

An interesting numerical test is represented by a breaking wave problem similar to the one described in [7,8]. The domain
of the problem is the interval [0,1], subdivided into 200 elements, with periodic boundary conditions. The material is a c-law
ideal gas [14] with c ¼ 5=3. The initial density has a sinusoidal variation
qðx;0Þ ¼ 0:001ð1:0þ 0:1 sinð2pxÞÞ:
The initial pressure is
pðx; 0Þ ¼ 106 qðx; 0Þ
0:001

� 	c

;

and the initial velocity is
vðx;0Þ ¼ 2
ðcs0 � csÞ

c� 1
;

where
cs ¼ c
pðx;0Þ
qðx;0Þ

� 	1=2

;

and
cs0 ¼ c
106

0:001

 !1=2

:
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Fig. 12. Density versus spatial position at time 2:124� 10�5 for the periodic breaking wave test problem. Solutions for different number of iterations of the
predictor/multi-corrector algorithm are computed with no artificial viscosity and CFL ¼ 0:90.
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The solution is smooth for a finite time 0 < Tbreak <1, at which point the wave breaks and a shock forms [7,8]. The nonlinear
version of the present algorithm, described in detail in [17,18], is used. The results of Fig. 12 are obtained for several predic-
tor/multi-corrector iterates, with no viscosity applied. The results of Fig. 13 are obtained with coefficients for the linear and
quadratic part of the nonlinear artificial viscosity chosen as c1 ¼ 0:15 and c2 ¼ 2:0, respectively. All simulations were run
using CFL ¼ 0:90, that is, according to (90),
Dt 6 0:90
h
cs
; ð94Þ
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Fig. 13. Density versus spatial position at time 3:728� 10�5 for the periodic breaking wave test problem. Solutions for different number of iterations of the
predictor/multi-corrector algorithm are computed with active artificial viscosity in compression, and CFL ¼ 0:90.
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for the computations presented in Fig. 12, and
Dt 6 0:90
h2

mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ c2

s h2
q ; ð95Þ
for the computations presented in Fig. 13 (note that the artificial viscosity m is applied only in compression, when $x � v < 0).
Consistent with the preceding analysis, an even number of iterations appears to be stable, and an odd number of iterations
produces obviously unstable results when no artificial viscosity is applied. In particular, Figs. 12 and 13 show the onset of
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Fig. 14. Density versus spatial position at time 1:87327� 10�4 for the periodic breaking wave test problem. Fig. 14(a) shows the stable solution in the case
of two iterations. Fig. 14(b) shows the onset of instabilities for seven iterations. Solutions are computed with artificial viscosity active in compression and
CFL ¼ 0:90.
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instabilities, which completely overwhelm the numerical results as the computations proceed for longer times. Stability
is seemingly regained in the case of seven iterations when the artificial viscosity is active, at the time t ¼ 3:728� 10�5

under consideration. However, at the later time t ¼ 1:87327� 10�4, the case of seven iterations is clearly unstable (see
Fig. 14).

This overall behavior is the result of the convergence of the predictor/multi-corrector algorithm to the neutrally-stable
implicit limit, in combination with the dissipation due to the artificial viscosity in compression regions. Figs. 4 and 10
and Eqs. (75)–(82)) show that the amplification factor of the odd iterates decreases for an increasing number of iterations,
consequently reducing the growth rate of instabilities. The subsequence of odd iteration simulations does converge to a
stable solution in the limit of an infinite number of iterations. The magnitude of the instability decreases with increasing
iterations, but the instability never vanishes completely for a finite number of iterations. The issue may not always be visibly
apparent in the results of a simulation if many iterations are used for a short time interval. In some circumstances, increasing
the simulation time allows the inherent instability to clearly manifest itself. This is the behavior observed when the breaking
wave problem is run for a longer time (again see Fig. 14).

Remark 16. As already discussed, the algorithm under investigation is second-order accurate for two or more iterations.
While, from a point of view of accuracy, no more than two iterations are required, it was often found by the authors that, in
more challenging computations, a larger number of iterations was required to minimize the occurrence of shock over/under-
shoots in the solution [17,18]. This point, in our view, justifies the presentation of a detailed analysis for a number of
iterations larger than two.
8.2. Interacting blast waves

As a second numerical test, we consider the Woodward-Colella interacting shock wave test problem [23]. In one dimen-
sion the domain of the problem is the interval [0,1], subdivided into 400 elements. Again, the material is a c-law ideal gas
with c ¼ 1:4. The gas is initially at rest between reflecting walls, with a uniform initial density everywhere equal to 1. On the
subdomain [0,0.1] the initial pressure is 1000 and on the subdomain [0.9,1.0] the initial pressure is 100. Everywhere else the
pressure is initialized to 0.01. Two strong shock waves develop and interact. The linear and quadratic part of the nonlinear
artificial viscosity have coefficients c1 ¼ 0:15 and c2 ¼ 2:0, respectively. Fig. 15 plots the numerical results of density versus
position for various values of the CFL control parameter. Two predictor/corrector iterations are used for these simulations.
The simulations with CFL 6 1 do not show any sign of instability, while the simulations with CFL > 1:10 appear mildly unsta-
ble. The time-step stability estimate seems to be accurate (and more restrictive) to within about 10%, at least for this test
problem.

Remark 17. This added stability may be due to the conservation properties enjoyed by the algorithm in the nonlinear
setting, which bound the global total energy to stay constant throughout the computation.

Remark 18. The large spurious overshoot in density at x � 0:765 is typical of Lagrangian simulations of this test [12,16], and
is a somewhat expected feature in this computation.
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(e) CFL = 1.15.
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(f) CFL = 1.20.

Fig. 15. Density versus spatial position for the Woodward–Colella test problem for different values of the CFL parameter. Plots are at the final time of 0.038.
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9. Summary

We have presented a von Neumann stability analysis of a linearized version of the predictor/multi-corrector algorithm
proposed in [17,18], which, at least in the one-dimensional setting, coincides with the time integrators documented in
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[2,5]. We have highlighted as a curious feature of this algorithm, that the odd iterates are unconditionally unstable, while the
even are conditionally stable (at least up to four iterates). Numerical tests showed that the time-step stability bound derived
in the linearized analysis also works well in the nonlinear case, and that the instabilities predicted in the linearized analysis
do occur in nonlinear computations.
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