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1. Introduction

The present article proposes a complete von Neumann stability and dispersion analysis of a linearized version of the
time-integration algorithm presented in [17,18]. This approach is based on a predictor/multi-corrector variant of the implicit
mid-point time integrator, and has the appealing property of conserving mass, momentum and total energy in the nonlinear
setting, without staggering in time the thermodynamic variables with respect to the kinematic variables. The algorithm
exactly corresponds to the staggered (in space) finite difference formulations of [2,5] in the case of one spatial dimension
and periodic boundary conditions. Recently, the authors have discovered that the algorithm in [2,3,5,17,18] does not yield
stable solutions in the case of an odd number of iterations [13], and the present work is a documentation of the detailed
analysis that followed these initial observations.

The von Neumann analysis of stability is well established for Lagrangian schemes [10,21], and, in this context, we would
like to mention the very recent work in [4], in which the Lagrangian staggered scheme proposed in [5] is analyzed over a
two-dimensional, uniform, periodic grid. The analysis in [4] is limited to the case of the implicit mid-point algorithm and
the scheme corresponding to only one predictor and one corrector passes, for the case of a purely acoustic system, with
no viscosity. This work is instead focussed on exploring the peculiar behavior of the even and odd iterations of the predic-
tor/multi-corrector, including the effects of viscosity, and is in agreement with the specific cases discussed in [4].

The analysis of stability applies to the linearized, small-perturbation form of the Lagrangian hydrodynamics equations. In
this case, due to the smallness of the displacements, the small-strain approximation is applied (i.e., the gradients in the
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current configuration of the material are approximated by the gradients in the original configuration). In addition, the values
of thermodynamic variables are given by small perturbations superposed to constant reference values. The linearized ap-
proach pursued here is therefore a specific limit case of the more general nonlinear Lagrangian hydrodynamics equations.
In this context, a proof of instability for the linearized case directly implies instability in the more general nonlinear case.
With compelling numerical evidence, we show how the instabilities predicted in the linear case also arise in the more gen-
eral nonlinear case, and that conditional stability limits derived in the linear case, when present, are also very reliable in the
nonlinear case.

The rest of the exposition is organized as follows: Section 2 is devoted to presenting the equations of Lagrangian hydro-
dynamics, deriving an appropriate and representative linearization. In Section 3, a discrete system of equations is obtained in
the case of one dimension and periodic boundary conditions. By means of the Discrete Fourier Transform, the von Neumann
stability analysis is applied in Section 4 to the system of discrete equations. Section 5 is devoted to the analysis of the purely
acoustic system of equations. In Section 6 the analysis is restricted to the highest wave numbers, with the purpose of deriv-
ing a simple stability bound for the time step in practical computations. In Section 7 the effect of viscosity on the stability of
all discrete modes is also accounted for. A number of one-dimensional compressible flow computations are presented in Sec-
tion 8, to confirm the theoretical findings also in the nonlinear case, for an ideal gas. A summary is presented in Section 9.

2. A simplified Lagrangian hydrodynamics system

In order to apply the von Neumann stability analysis to the system of equations of Lagrangian shock hydrodynamics, a
linearization procedure is necessary. To this goal, we briefly summarize the system of Lagrangian equations for a compress-
ible fluid in which heat fluxes, heat sources, and body forces are absent. Let 2, and Q be open sets in R™ (where ng is the
number of spatial dimensions). The deformation

¢ Qo — Q= (L), (1)
Xox=g(X,t) VXeQ. t >0, 2)

maps the material coordinate X (sometimes referred to as the material, or Lagrangian, coordinate), representing the initial
position of an infinitesimal material particle of the body, to x, the position of that particle in the current configuration
(see Fig. 1). Qo is the domain occupied by the body in its initial configuration, with boundary I'y. ¢ maps Q, to @, the domain
occupied by the body in its current configuration. The deformation gradient and deformation Jacobian determinant can be de-
fined as

F = Vxo, (3)
] = det(F), (4)

where Vy is the gradient in the original configuration. In the domain @, the equations for the displacement update and con-
servation of mass, momentum, and energy read:

Fig. 1. Sketch of the Lagrangian map ¢.
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u=uv, (5)
Pl = po, (6)
0=pv+ Vap— Vi (pVVi0), (7)
0=peé+pVy-v—pVV,v: Vv (8)

Here, V, and V,- are the current configuration gradient and divergence operators, and (-) indicates the material, or Lagrang-
ian, time derivative. u = x — X is the displacement vector, p, is the reference (initial) density, p is the (current) density, v is
the velocity, and p is the pressure, assumed to abide an equation of state of the type p = p(p, €), with € the internal energy per
unit mass.

Remark 1. We are considering the general case of a fluid with viscous stresses. The viscosity might be either physical or
artificial (as in shock-capturing operators for Lagrangian transient algorithms).

2.1. Structure of the Lagrangian shock hydrodynamics flows

It is important at this point to further elaborate on the structure of the Lagrangian shock hydrodynamic systems, and ob-
tain a set of equations amenable to the analysis of stability. To this end, recall that, if an equation of state of the type
€ = €(p,p) exists, then

de dp. 9)

p dp

Using the mass conservation equation in differential form
p+pVx-v=0, (10)

the energy Eq. (8) can be rearranged as:

p Jold
.0 Py
pVVav 1V p+— Ve-v ], 11
o€
ap

X b pVe v = i
pp DVx —papp

where, for a general compressible flow, pd,€|, # 0. It is possible to further manipulate the previous result using thermody-
namic identities. First note that, by standard calculus derivations,

o\ _op
apl,) o€,

By Gibbs’ identity (i.e., the combined first and second law of thermodynamics [6]) de — p/p?dp = 6dn (0 being the temper-
ature and # the entropy per unit mass),

(12)

p  O€

=p—| . 13
o~ Popl, (13)

Remark 2. Eq. (13)is intended to be an abstract thermodynamic relationship, and it is important to notice that we have not
assumed that Lagrangian hydrodynamics flows are isentropic.

Combining (12) and (13) in the term multiplying the divergence in (11) yields
ap

o€ ap
&ﬂ<% P) p(‘% > i

Eq. (14) can be further simplified recalling that a thermodynamic relation of the type p = p(p, €) yields

P _ Hoe
p pf)/)pi o€

}]_%

_op
86

ap

2¢
ap n

op
dp = 8p 86 de, (15)
and, particularly,
7a_p _p| , op| ve

Pe (16)

14



Substituting (16) into (14) yields
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op op
p> <86 q 0P F) ap

where c; is the isentropic speed of sound in the medium. Hence (11) reduces to

E
9

%
0

ap

_op o€
Je

,0p

= pc2, (17)
n

2¢ T\ o€
ap o

n

p% (0 + pc2Vy-v) = pyWViv: Vi, (18)
apl,
Defining the Griineisen parameter [14] as
_ 61 _ l% 7 (19)
P , p o€l
and recalling that I" # 0 for a compressible fluid, Eq. (18) yields
P+ pciVy-v=T(pvV,v: Viv). (20)

Remark 3. For an ideal gas satisfying a y-law equation of state, it is easy to derive I' = y — 1 = constant.

The momentum and energy equations can be combined into the mixed, first-order system form of a nonlinear dissipative
wave equation in » and p:

pir+ Vep = Vy - (pVVi0), 1)
P+ pciVy-v=T(pvV,v: Vo). (22)

2.2. Linearization of the equations

Assume the solution is small with regard to the kinematic variables (velocity, displacement, acceleration), that is
v=v <1, (23)
u=u<1, (24)

and that the solution for the thermodynamic variables (density, pressure, internal energy) is given by a small perturbation of
constant reference fields, namely:

p=p+p, p=const, p <1 (25)
p=p+p, p=const, p <1 (26)
CG=Cs+¢C, C=const, c <1 (27)

Hence, by neglecting quadratic and higher-order terms, the linearized version of (21) and (22) is given by:
PV + Vxp' = pvVx - (V3?), (28)
P+ pciVx - v =0. (29)

Remark 4. Note that the viscous term in the energy equation is negligible with respect to the other terms, as it is quadratic
in the velocity.

Remark 5. Linearization implies the small-strain approximation, which allows for the simplification V, ~ Vx (the motion of
the mesh is neglected when computing gradients).

Remark 6. If the same linearization procedures are applied to the displacement Eq. (5) and the differential form of the mass
conservation Eq. (10), the result is
=1, (30)
P +pVx-v =0. 31

Observe that the linearized mass and displacement equations decouple from the linearized momentum and energy equa-
tions. For this reason, we will only consider the system of linearized momentum and energy equations in the analysis that
follows.

Remark 7. For the sake of simplicity, we will drop the primes and bars from Eqs. (28) and (29).
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In order to achieve insightful results, we will consider a simple one-dimensional flow with periodic boundary conditions.
The reader will appreciate that the subsequent derivations are quite involved, and that these assumptions are essential to
obtain meaningful results.

3. One-dimensional linearized variational formulation

We consider a weak formulation of the one-dimensional linearized equations of Lagrangian shock hydrodynamics, aug-
mented by a shock capturing artificial viscosity operator [18]. Namely, denoting by T the unit periodic torus along the real
line R, we have, for every piece-wise linear (continuous) shape function y and every piece-wise constant (discontinuous)
shape function ¢,

OZ/T‘Wf/T%‘M/MXW’X’ (32)
0:'/T ¢p+'/w 6V, (33)

where, for the sake of simplicity, we have denoted V = pu (recall p = const.) and P = p. Using the same predictor/multi-cor-
rector strategy adopted in [19], the discretization in time of (32) and (33) yields:

0= /l// nlj:ll - At/l//XPn+l/2+At/w.xv(v.x)fx—l/% (34)
0= /¢ (PR - +At/¢C nitas (35)

where ()" and ()™ are used to denote quantities computed with the predictor/corrector iterates (i) and (i + 1), respec-
tively, and the subscripts n,n + 1, and n + 1/2 are used to indicate quantities at time t,,t, + 1, and tn 12 = (&, + tni1)/2.

Remark 8. Observe that the latest available velocity iterate is used in the computation of the second term of (35), as in
[2,5,17,18], with the purpose of conserving total energy in the nonlinear setting. This time discretization is adopted to keep
the analysis as close as possible to the algorithm effectively used in the computations in [2,5,17,18], and we refer to this
method as the conservative time integrator.

Assume a uniform, equispaced subdivision of the torus T into finite elements of measure h. The velocities are approxi-
mated by piece-wise linear functions with degrees-of-freedom collocated at the nodes of the discretization, while the pres-
sures are approximated by piece-wise constants, with degrees-of-freedom collocated at the barycenters of the elements
(staggered spatial discretization). In addition to the previous assumptions, mass lumping is adopted in the momentum equa-
tion, yielding the following finite difference equations:

(i+1) (i)
0= V]n+1 V]” t5 - 2¢; (P]+1/2 n+1 +P+1/2” - P —1/2.n+1 PJ'*]/2~”)

K .
+ 2 <_V;l+)1,n+1 = Vipin + 2v)) in T 2Vin— V el ijl-n)v (36)
CsO
0= P]i:—ll/Z n+1 Pj+1/2-” + ST (V](r—llnﬂ + V}+1 n— V : 11n+1 fol-")7 (37)

where ¢ = %At is the acoustic Courant number, k = ¥4t and j is the node index.
h 12

Remark 9. In the simple one-dimensional, periodic case, Eqs. (36) and (37) exactly coincide with the one-dimensional
version of the finite difference schemes detailed in [2,5].

4. von Neumann stability analysis

As customary in the von Neumann stability analysis (see [15,20] for details), because the boundary conditions are peri-
odic, the solution degrees-of-freedom can be expanded as a finite, linear combination of complex exponentials with complex
coefficients. This eventually amounts to applying a Discrete Fourier Transform (DFT) operator to the discrete Egs. (36) and
(37). In particular, we have:

. N/2 P
Vih= 3" Ve, (38)
kf—N/ZH
(i) i 1 2
P}+l/2n - Z P el (39)
k=—N/2+1

where i = v—1,and V" is the Fourier coefficient associated with the kth harmonic, time step n and iterate (i). Note that N is

the number of elements (a multiple of 2), and B, = 2"?["“‘ =2 is an angularly scaled version of the integer wave number k
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(with |T| = meas(T) = Nh = 1 the measure of the torus). Complex exponentials associated to different wave numbers satisfy
a discrete orthogonality property:

N/2-1

> elhmelim =g, for —N/2<k,q<N/2, (40)

m=—N/2
with i, the Kronecker delta tensor (0 = 1 if k = g, and dy, = 0 if k # q). Substitute (38) and (39) into (36) and (37) multi-
plied by e’/ and e +1/2) respectively, and sum over j. We multiply (37) by e=Y*1/? instead of e/, in order to simplify the
algebra, as the pressure variable is staggered in space with respect to the momentum equation.

Due to the orthogonality property (40), and the linearity of the system of Eqs. (36) and (37), it is easy to verify that the
previous steps lead to N pairs of equations, coupling the dynamics of the kth pressure and velocity modes, with
—N/2+4+1 < k< N/2. Namely:

I +A)Z5Y, = AZY), + (I +Ay)Zy, (41)

kn+1 —

where

(o
zp, =< (42)
Pk.n

is the kth velocity/pressure modal pair, relative to the nth time step and the ith iterate, and

1 0

. [O 1 } | (43)
[ 0 0

o ° } (44)
lisosin(%) 0

A _ [R(eos(py~1) —iosin (”;)} 3)
L 0 0

A [Kc(cos(B) —1) —itosin (%) ' (46)
| —i§osin(§) 0

It is also very important to observe that because the degrees-of-freedom “signal” has real values, the discrete Fourier coef-
ficients must satisfy the complex conjugacy property
z%,=Z)), for0O<k<N/2-1, (47)

—k.n

where W~ indicates the complex conjugate of w (componentwise). For the same reason, the following condition on the of-
ten called “odd ball” mode holds:

zy),,=0. (48)

Because complex conjugates have the same absolute value and opposite phase, it is sufficient to limit the study of the ampli-
fication factors for the modes of the discrete system to the range 0 < k < N/2, that is, 0 < ; < 7. In the discussion that
follows, it will also be important to consider a variation of the time-integration algorithm, in which the velocity iterate
V@1 in (37) is replaced by the previous iterate V®. This method will be referred to as the lagged approach. In this case,
Eq. (37) becomes

0 =Py = Prvan + 5 (Vi + Vista = Vi g = Vita) (49)
and, consequently, Ap and A; need to be modified as:

Ay =0, (50)

A =A,. (531

This approach yields a more straightforward time integrator for the linearized equations, which does not extend, however, to
a conservative scheme in the nonlinear case.

The vector Eq. (41) is a recurrence relationship between the predictor/multi-corrector iterates of the proposed time-inte-
gration approach. Set

Bo=(I+Ap) ' (I+A), (52)
B, = (I+A) 'A;, (33)
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and recall that the first guess for the new iterate at time tni1 is the solution at time t,, namely zO — Zm. Then, we can

k,n+1
derive explicit recurrence formulas for the computation of Z ’“1 in terms of an

k.n+
Z)  =BiZy) , +BoZiy = (Bo+B)Zin =G Zy, (54)
ZQ)  =BiZy) , +BoZiy = (BiG" + Bo)Zin = GV Zy,,, (55)
ZP)  =BiZ),, +BoZin = (BIG® + Bo)Zy = GV Z,,, (56)
Z)  =BiZ_)  +BoZiy = (BiG® +Bo)Zin=GC"Zy,., (57)
Zg = (58)

In the limit for an infinite number of iterations, we obtain the amplification matrix for the original implicit mid-point algo-
rithm from which the predictor/corrector time integrator is derived:

(I+A0) kn+l 7A1 kn+1 + (I +A2)Zk”7 (59)

that is, removing the superscript (cc) from Z™  and rearranging terms,

kn+1'

Zyno = (I +A;—A) (I +A) Z, = G Zy,. (60)

Remark 10. The predictor/multi-corrector method can therefore be interpreted as a fixed-point iterative process,
converging to the solution of the implicit method (60). In particular, the conservative scheme has the nature of a Gauss-
Seidel iteration, as the matrix I + Ag is lower diagonal, while the lagged scheme resembles a Jacobi iteration, since in this
case Ay = 0.

Remark 11. Convergence of the fixed-point iteration is ensured if ||B;|| < 1 (sufficient condition). It will be subsequently
shown that this condition is equivalent to the temporal stability condition.
It is possible to evaluate the stability properties of the proposed predictor/multi-corrector algorithm, by evaluating how

G evolves in time an initial condition. In particular, if

G's
167 = max 1651
ser\o  [IS]|

<1 (61)

then stability of the numerical discretization is ensured. Defining the spectral radius as

p(6") = max{|(G")}} < 167, (62)
where 1(G") is a (generally complex) eigenvalue of G”, we can recast condition (61) as (see [9])

p(G") < 1 = stability, (63)

p(G") > 1 = instability. (64)

These conditions are consequence of a well-known theorem in matrix analysis:

Theorem 1. (cf. [11], p. 298) Let A € C™™, where C is the complex field. Then: lim,_,.,A" = 0 if and only if p(A) < 1

Hence, if p(G?) < 1, Theorem 1 directly implies stability. If p(G”) > 1, one can consider, as initial condition vector Zo, the
eigenvector relative to an eigenvalue 1o with |/o| > 1. Using the properties of vector norms, it is easy to see that

limy_ || Z, | = lim,_. || (G¢ ) Z | = lim,_|40|"[|Zo|| = oo, and we have instability. The case that our analysis covers less pre-
cisely is the case when p(G") = 1. Recalling that (see [11], p. 299)
p(GY) = lim ||(G")"|"", (65)

it is easy to realize that the case p(G") = 1 admlts linear growth in the solution (i.e., ||(G®)"|| = O(n)). However, the analysis
that follows (see, e.g., Fig. 2) shows that p(G"”) = 1 occurs in three special cases:

1. 0 = 0 < At = 0, a trivial case corresponding of no time evolution.

2. B, =0, corresponding to the evolution in time of a constant mode. In this case, it is not necessary to resort to the von
Neumann analysis, to prove that the entire class of algorithms under consideration stably preserves constant solutions
in time.

3. The time-step stability limit, as a limit case of the condition p(G"”) < 1. This case is not so important in practical (non-
linear) computations, since it is usually not safe to run computations exactly at the stability limit.

Note also that a complex eigenvalue of G” can be expressed as:

HGY) = [4(G") e, (66)
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0) (m) 4 jterate. « = 0. (C) (n) 4 jterate. x = 0. (L) (0) 4™ iterate. x = 1/4. (1

Fig. 2. Elevation plots of the spectral radii pg (0, f) for k = 0, K = 1/4, and various iterates of the predictor/multi-corrector algorithm. In the top row, the
implicit mid-point time integrator detailed in (60). In the subsequent rows, in ascending order, the iterates from one to four. Note that in Fig. 2(a), (b), (d), (e),
(g), (h),(j), (k), (m), and (n) the vertical range is [0,1.2], while in Fig. 2(c), (f), (i), (1), and (o) the vertical range is [0,1]. Also note that Fig. 2(a) and (b) are identical.

where WAt = arg(/l(G(i))), and @ € R is the phase. This decomposition will be important for the study of the dispersion
properties of the proposed time-integration approach. An alternative expression for (66) is

MG = el-iont (67)
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(68)

By performing a Taylor expansion of ¢ and @ in the limit of vanishing time step At and mesh size h, it is possible to recover
the truncation error and the formal order of accuracy of the various iterates of the method.

Due to the complexity of the algebra involved, we are not including the calculations and explicit expressions of the eigen-
values of the G matrices in the general case. We will present the fundamental results by appropriate plots in Sections 5 and
7. All algebraic symbolic manipulations were performed using the MATHEMATICA®™ software [1,22] .

5. The case of vanishing viscosity

In shock hydrodynamics computations, the artificial viscosity is usually present only in shock layers, and absent in expan-
sion regions. Therefore, it is very important to study the proposed time integrator in the limit of a vanishing viscosity, as
most of the flow domain is subject to this condition.

5.1. Amplification factor

Fig. 2 shows the spectral radii of the matrices G” for i = 1,2,3,4 and i — oo (implicit limit), for the conservative and
lagged algorithms in the case x = 0, and also for the conservative algorithm when % = 1/4. For the time being, we focus
on the plots relative to x = 0.

First, note that the implicit algorithm detailed in (60) is neutrally stable (Fig. 2(a) and (b)), as the spectral radius of the
corresponding amplification matrix is equal to unity over the entire plane [, f]. The first and third iterates of the conserva-
tive algorithm (C) are unconditionally unstable, while the second and fourth iterates are conditionally stable, as shown in
Fig. 2(g) and (m). This phenomenon, somewhat surprising, can be explained by realizing that the spectral radii for the pre-
dictor/multi-corrrector scheme exhibit a non-monotonic convergence to unity as (i) — co. Observe that the situation for the
lagged algorithm is somewhat different, since the first two iterates are unconditionally unstable (Fig. 2(e) and (h)), but the
subsequent third and fourth iterates regain conditional stability in the range ¢ € [0, 1] (Fig. 2(k) and (n)). This fact can easily
be observed in the contour plots of the spectral radii presented in Fig. 3, and perhaps even more clearly in the sections at
various values of ¢ presented in Fig. 4.

Also note in Fig. 4(d) that the second iterate, indicated by a red’ line, shows the insurgence of a bifurcation (a kink in the
red curve, near f; = 37/4). Past the bifurcation point, the eigenvalues of the amplification matrix cease to be complex con-
jugate and become real, as also evident in Fig. 7(d), by the absence of a phase in the eigenvalues. This is not a desirable prop-
erty in wave propagation problems, where one would expect the discretized equations to behave as a system of harmonic
oscillators. Past the bifurcation point, the discrete solutions become real exponentials in time, and cause an incorrect repre-
sentation of the structure of the original system of partial differential equations. The lagged algorithm does not show this
behavior.

5.2. Dispersion error

When no viscosity is present, it is very insightful to evaluate the extent of the dispersion error in computations. This can
be done by observing that the classical dispersion relationship for a linear wave is given by w = 27mkc,/|T|. Recalling that
T = hN, it is easy to derive that

WAL = G fy. (69)
A typical measure of the dispersion error is given by the ratio

9 — arg(/“(a7 ﬁk)) . (70)
w o fy
Fig. 5 shows elevation plots of the ratio &w/w. It is noticeable in Fig. 5(e) and (i) that bifurcation takes place for values of [a, ;]
in the neighborhood of [1, 7], for the second and fourth iterate of the conservative algorithm, respectively. As already men-
tioned, this behavior is not present for the lagged scheme.

Contour plots of the dispersion ratio are presented in Fig. 6. The black thick lines indicate the loci where the dispersion
ratio equals unity, that is, optimal behavior (no phase error).

Comparing the various results in Fig. 7, notice the good behavior of the conservative approach in retaining the dispersion
properties of the corresponding implicit method, at least until a bifurcation arises for the second iterate (see Fig. 7(a)-(d)).

! For interpretation of color in Fig. 4, the reader is referred to the web version of this article.
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5
i . . i A 40 [4]8 . . . . 40 0
0 02 04 06 08 10 00 02 04 06 08 10 0

o

(h) 4% iterate (L)

o

(g) 4" iterate (C)

Fig. 3. Contour plots of the spectral radii of various iterates of the predictor/multi-corrector algorithm for x = 0. Fig. 3(a), (c), (e), and (g): conservative
scheme (C). Fig. 3(b), (d), (f), and (h): lagged scheme (L).

This is not the case for the lagged scheme, for which all the iterates have quite different phase characterization with respect
to the implicit method (Fig. 7(e)-(h)).
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Fig. 4. Spectral radii for the predictor/multi-corrector algorithm in the case x = 0, for various values of the acoustic Courant number . Fig. 4(a)-(d):
Conservative scheme. Fig. 4(e)-(h): Lagged scheme. Black: Implicit time integrator. Orange, red, green and blue are used for the first, second, third, and
fourth iterate, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

53. Lo

w wave number limit and truncation error

A Taylor expansion of the amplification factor p and dispersion ratio @/ in a right neighborhood of g, = 0 can more

clearly quantify the previous conclusions on the nature of the proposed conservative algorithm.

— e
oG )71_'_024/’71« o), w(g ):1 4+1lgz
el 2

p6®) = 1- T8 oy, @€ 1 2E e o,

) Usﬁk , o 06 2 +0°
PG =1+ -+ 0(B), — —=1-"o,

@) 7B o) @GY) 72+0
pEY) =1k +05), —_ =1

ﬁ k

&+ O(By).
B + OBy

+0(By),

(71)
(72)
(73)

(74)

Hence, it is clearly noticeable the fact that the low modes are amplified for odd iterates and damped for even iterates. The
dispersion of low modes, instead, seems to maintain the same limit behavior as soon as the number of iterates is larger than
one. Furthermore, a Taylor series expansion of & and @ in powers of At and h allows to evaluate the order of convergence of
the proposed method. We obtain:

(G = JCZIEZAt +O(h°At),

el

@(GV) =w— ﬂcshzk3 - Eéiémz + 0(A2h?),

EGY) = Ec41<4Ar3 +0(h°AL),

®(G?)=w— —c5h2k3 - ﬁcgkmtz + O(A?h?),
EGY) = ——4c§k6AtS + O(h*AP%),

®(G¥) = lcshzfé 12c§k3At2+0(At2h2)
EHGY) = zlﬁcfkgAﬁ 0L,

NCEDY — oy 2”3__ 313 A12 21,2
oGy =w 24csh k 12csk At + O(At*h?),

(75)
(76)
(77)
(78)
(79)
(80)
(81)

(82)

where i« = 27tk/|T|, so that w = ic,. Consequently, the first, second, third and fourth iterates of the predictor/multi-corrector
conservative method are first-, third-, fifth- and seventh-order accurate with respect to the dissipation error. All iterates are
second-order accurate with respect to the dispersion error.
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(b) Implicit.

10 10

(¢) 1% iterate. (C) (d) 1% iterate. (L)

Fig. 5. Elevation plots of the dispersion ratio @/w, for k = 0, and various iterates of the predictor/multi-corrector algorithm. In the top row, the implicit
mid-point time integrator detailed in (60). In the subsequent rows, in ascending order, the iterates from one to four. Fig. 5(a), (c), (e), (g), and (i) refer to the
conservative algorithm (C), Fig. 5(b), (d), (f), (h), and (j) refer to the lagged algorithm (L). Also note that Fig. 5(a) and (b) are identical.

6. Stability of the highest wave numbers

Before proceeding with the case in which dissipation is present, it is important to develop a preliminary analysis of sta-
bility for the highest spatial wave numbers in the discrete equations. Stability of the highest modes in the computation is a
necessary but not sufficient condition for overall stability. However, an understanding on the high wave number dynamics
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Fig. 6. Contour plots of the ratio @/w, for k = 0, and various iterates of the predictor/multi-corrector algorithm. Fig. 6(a), (c), (e), and (g): conservative
scheme. Fig. 6(b), (d), (), and (h): lagged scheme. The black continuous line indicates the locus w/m = 1.

can shed light on the overall behavior of the algorithm, and, most importantly, provide stable time estimates of practical use

in computations.
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Fig. 7. Plot of the ratio @/w, for k = 0, for various values of the acoustic Courant number o. Fig. 7(a)-(d): conservative scheme. Fig. 7(e)-(h): Lagged
scheme. Color scheme is as follows. Black is used for the implicit version of the algorithm. Orange, red, green and blue are used for the first, second, third,
and fourth iterate, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

The amplification of the highest wave number is governed by the matrices G, when g, is set equal to 7. In this case, a
number of algebraic manipulations leads to the following expressions for the eigenvalues of the matrices G"’s:

Ay=1-0*-2k (83)
:F\/O'4+462(—1+K)+4K27 (84)
A =1-20%+ 0" - 2K + 40%K + 4K* (85)
T \/71 + 204 + 4K — 812 + (1 + 0% — 2K + 412 + 02(—2 + 4K))?, (86)
A= (87)

where we have omitted the derivations for the third and higher iterates, since the algebraic expressions become very com-
plex and tedious to manipulate. Let us consider the second iterate, that is the first iterate for which second-order accuracy is
achieved, and analyze the stability condition —1 < A{) < 1. Only the right bound is meaningful for stability. Setting /\*) = 1
yields a polynomial equation, with roots ¢ = 0,6 = —v1 — 2k, and ¢ = V1 — 2k. Only the last root is useful in defining a
stability limit, which, taking squares, reads

0> +2Kk—-1<0 or At +2vAt—h* <0. (88)

The same condition is derived in the case of four iterations of the predictor/multi-corrector algorithm, with much more com-
plex algebraic manipulations. Solving the quadratic equation associated with (88) yields the bounds

—v—/v2 4+ c2h? V4 /v +c2h?
ALK . (89)

2 = = 2
¢ Cs

The left bound is always verified, while the right gives the stability limit. Multiplying and dividing the entire inequality by

V4 4/ V2 + cgh2 (always a strictly positive quantity) and simplifying the term c2, we obtain
W

V4 /V2 4 2k’

Remark 12. In the limit of a vanishing artificial viscosity, the acoustic Courant-Friedrichs-Lewy condition is obtained,
namely,

At < (90)

At<— or o<1. (91)

Remark 13. In the limit of a vanishing speed of sound (condition very often encountered in hypervelocity impact problems),
the stability limit is uniquely dependent on the artificial viscosity v and takes the classical form of the dissipative Courant—
Friedrichs-Lewy condition:
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2

Atgg—v or K< (92)

N —

Remark 14. The predictor multi-corrector approach can also be interpreted as a fixed-point iteration procedure [18]. A suf-
ficient condition for the convergence (in spectral space) of such procedure is ||B;|| < 1, that is p(B;) < 1. It is not difficult to
verify that, when g, = 7, this condition coincides with (88).

7. The case of non-vanishing viscosity

Artificial viscosity operators are usually added in shock hydrodynamics computations to enhance the robustness of the
algorithms under extreme shock wave conditions. Viscosity operators usually are modeled as Laplace diffusive operators,
and may pose additional constraints on stability, further limiting the time step. In this case, because of the parabolic nature
of the problem, the dispersion error analysis is less relevant and is omitted. Also, only results for the conservative scheme are
presented, since this method is the main focus of the present work.

7.1. Amplification factor

The amplification factor (spectral radius) of the matrices G is presented as a function of the non-dimensional wave num-
ber g, and acoustic Courant number ¢ in Fig. 2(c), (f), (i), (1), and (o), for a value of the non-dimensional viscosity coefficient
K = 1/4. A comparison with the plots in Fig. 2 for the case of k¥ = 0 shows that the introduction of diffusion in